×

结合CNS与最近空间距离的人脸识别

消耗积分:1 | 格式:rar | 大小:0.90 MB | 2017-12-03

分享资料个

  针对人脸识别中在分类器判别时没有充分利用类间差异的问题,提出一种补集零空间(CNS)算法,并进一步提出结合CNS算法与最近空间距离的人脸识别算法——补集零空间与最近空间距离算法(CNSD)。首先,在训练样本中,对每一种类别的人脸样本,构建其子空间并计算其补集的零空间;其次,计算测试样本与所有子空间和补集零空间的距离,找到最小的子空间距离与最大的补集零空间距离对应的类别,将其判别为测试样本的类别。算法在ORL与AR人脸数据集上进行了测试,当训练样本数较小时,CNS算法与CNSD算法识别率远高于最近邻分类器(NN)算法、最近空间距离(NS)算法、最近最远空间距离(NFS)算法;训练样本数较大时,CNS算法与CNSD算法识别率也略高于NN算法、NS算法、NFS算法。实验结果表明,所提算法能充分利用图像的类间差异,提高人脸识别的成功率。

结合CNS与最近空间距离的人脸识别

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !