针对当前《知网》的词语语义描述与人们对词汇的主观认知之间存在诸多不匹配的问题,在充分利用丰富的网络知识的背景下,提出了一种融合《知网》和搜索引擎的词汇语义相似度计算方法。首先,考虑了词语与词语义原之间的包含关系,利用改进的概念相似度计算方法得到初步的词语语义相似度结果;然后,利用基于搜索引擎的相关性双重检测算法和点互信息法得出进一步的语义相似度结果;最后,设计了拟合函数并利用批量梯度下降法学习权值参数,融合前两步的相似度计算结果。实验结果表明,与单纯的基于《知网》和基于搜索引擎的改进方法相比,融合方法的斯皮尔曼系数和皮尔逊系数均提升了5%,同时提升了具体词语义描述与人们对词汇的主观认知之间的匹配度,验证了将网络知识背景融入到概念相似度计算方法中能有效提高中文词汇语义相似度的计算性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !