由于微博文本的长度较短,直接使用隐狄利克雷分布(LDA)模型会导致特征向量高维稀疏。为此,提出种融合标签语义的热点话题挖掘方法。利用公共块算法计算微博标签的相似度,合并标签相似度较高的微博文本。采用LDA模型对合并后的文本建模,并通过K- means聚类算法挖掘微博热点话题。实验结果表明,与针对单微博文本建模的方法以及直接合并相同标签的方法相比,该方法的困惑度较低,挖掘热点话题的准确性较高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !