×

结合本体语义和用户属性的改进协同过滤算法

消耗积分:0 | 格式:pdf | 大小:0.98 MB | 2021-05-25

分享资料个

  传统协同过滤推荐算法在处理海量数据时存在数据稀疏性和项目长尾效应,导致推荐精度较低。针对该问题,结合本体语义和用户属性,提出一种改进的协同过滤算法。利用本体计算项目之间的语义相似度,构建项目相似度矩阵,同时引入用户属性计算用户相似度矩阵。通过融合本体语义和用户属性形成用户-项目评分矩阵,并对该矩阵的预测评分进行加权处理,生成TOP-N推荐结果。实验结果表明,相比传统皮尔逊相似度计算协同过滤算法、基于本体语义的协同过滤算法和基于评分矩阵填充与用户兴趣的协同过滤算法,该算法的平均绝对误差较低,准确率较高,综合性能及新颖度较优。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !