×

基于分布式词向量的主题分类

消耗积分:1 | 格式:rar | 大小:0.69 MB | 2017-12-05

分享资料个

  主题分类在内容检索和信息筛选中应用广泛,其核心问题可分为两部分:文本表示和分类模型。近年来,基于分布式词向量对文本进行表示,使用卷积神经网络作为分类器的文本主题分类方法取得了较好的分类效果。本文研究了不同词向量对卷积神经网络分类效果的影响,提出针对中文语料的topic2vec词向量模型。本文利用该模型,对具有代表性的互联网内容生成社区“知乎”进行了实验与分析。实验结果表明,利用topic2vec词向量的卷积神经网络,在长内容文本和短标题文本的分类问题中分别取得了98.06%,93.27%的准确率,较己知词向量模型均有显著提高。

基于分布式词向量的主题分类

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !