×

基于卷积神经网络的图像标注模型

消耗积分:1 | 格式:rar | 大小:0.79 MB | 2017-12-07

分享资料个

  针对图像自动标注中因人工选择特征而导致信息缺失的缺点,提出使用卷积神经网络对样本进行自主特征学习。为了适应图像自动标注的多标签学习的特点以及提高对低频词汇的召回率,首先改进卷积神经网络的损失函数,构建一个多标签学习的卷积神经网络( CNN-MLL)模型,然后利用图像标注词间的相关性对网络模型输出结果进行改善。通过在IAPR TC-12标准图像标注数据集上对比了其他传统方法,实验得出,基于采用均方误差函数的卷积神经网络( CNN-MSE)的方法较支持向量机(SVM)方法在平均召回率上提升了12. 9%,较反向传播神经网络( BPNN)方法在平均准确率上提升了37. 9%;基于标注结果改善的CNN-MLL方法较普通卷积神经网络的平均准确率和平均召回率分别提升了23%和20%。实验结果表明基于标注结果改善的CNN-MLL方法能有效地避免因人工选择特征造成的信息缺失同时增加了对低频词汇的召回率。

基于卷积神经网络的图像标注模型

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !