定义抽取是从非结构化文本中自动识别定义句的任务,定义抽取问题可建模为句子中术语及相应定义的序列标注问题,并利用标注结果完成抽取任务。针对传统的定义抽取方法在抽取定义特征过程中费时且容易造成错误传播的不足,提岀一个基于双向长短时记忆(BSTM)的序列标注神经网络模型,对输入文本进行自动化定义抽取。通过将原始数据输入到 BILSTM神经网络中,完成输入句的征表示,并采用基于LSTM的解码器进行解码得到标注结果。在 Wikipedia英文数据集上的实验结果表明,该精确率、召回率和F1值分别为94.21%90.10%和92.11%,有效提升了基准模型效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !