×

基于关联规则分析和神经网络的数据清洗策略

消耗积分:1 | 格式:rar | 大小:0.99 MB | 2017-12-14

分享资料个

  针对变压器设备大数据状态评估过程中存在数据缺失以及异常数据等问题,提出了一种基于关联规则分析和神经网络的数据清洗策略。首先通过关联规则挖掘,建立了衡量状态监测量间关联程度的数学模型,找出具有强关联性的时间序列。然后利用基于密度的聚类算法检测出序列中的缺失值以及异常点,提出了考虑序列关联性的清洗流程和规则,有效区分可清洗的传感器数据异常和设备状态异常。针对可清洗的数据点,利用小波神经网络模型进行缺失数据预测和错误数据修正,并动态修正小波神经网络参数和组合预测,提高了网络的清洗效率和准确率。以实际变压器设备在线监测数据为例进行测试,测试结果表明序列数据的关联性分析和小波神经网络相结合,能够有效提高变压器在线监测数据清洗的准确度。

基于关联规则分析和神经网络的数据清洗策略

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !