基于人类视觉注意机制的显著性对象检测模型作为能主动感知图像中重要信息的有效方法,对探索视觉早期认知过程的大范围知觉信息组织具有重要意义.然而由于夜间图像具有低信噪比和低对比度特性,现有的视觉显著性对象检测模型在夜间场景中容易受到噪声干扰、弱纹理模糊等多方面因素的影响,有鉴于此,本文提出了一种基于区域协方差和全局搜索的夜间图像显著性对象检测方法.首先将输入图像分割为超像素块。并分别计算它们的协方差,然后使用超像素块协方差的差异性作为适应度函数。并结合全局搜索算法来优化各个超像素块的显著值.最后通过图扩散方法来精炼显著图结果.实验测试采用了5个公开图像数据集和1个夜间图像数据集,通过与11种目前主流的视觉显著性对象检测模型进行对比。综合评价了本文所提出模型的性能.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !