×

基于信息构建关联网络的社交关系挖掘

消耗积分:1 | 格式:rar | 大小:0.98 MB | 2017-12-15

分享资料个

  针对目前基于监督学习的关系抽取方法需要标注大量训练数据和预先定义关系类型,提出了一种基于词语共现信息构建关联网络并在关联网络上进行图聚类分析的人物关系提取方法。首先,从新闻标题数据获得关联度较高的500个人物对用于关系抽取研究;然后,抓取关联人物对所在新闻数据,对其进行预处理,并利用词频一逆向文档频率( TF-IDF)得到人物对共现句子中的关键词;其次,基于词语共现信息得到词语之间的关联,进而建立关键词关联网络;最后,利用对关联网络进行图聚类分析以获得人物关系。在关系抽取的实验中,与传统基于词语共现和模式匹配的中文实体关系提取方法相比,所提方法在准确率、召回率和平衡F分数( F-score)上分别提升了5.5,3.7和4.4个百分点。实验结果表明,所提算法能够在没有标注训练数据的条件下,有效地从新闻数据中抽取丰富且高质量的人物关系数据。

基于信息构建关联网络的社交关系挖掘

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !