针对传统协同智能推荐技术的冷启动、数据稀缺性问题,为提高推荐算法的效率和准确性,提出一种基于社会化媒体情境的多维智能推荐算法模型。该模型将目标用户的属性特征、行为特征考虑到社会化媒体情境信息中,并动态实时捕捉用户在不同社会化媒体情境下的偏好倾向,利用联机分析处理( OLAP)技术对多维数据进行处理。该模型将用户间的社会化关系和所处的政治经济环境视为衡量用户相似的重要指标,同时使用皮尔森系数和云模型来计算用户间各特征的相似度,并以此为推荐基础向用户呈现更个性化和定制化的推荐结果。实验结果表明,该模型的推荐结果的平均绝对误差明显小于传统的协同智能推荐和单纯的基于云模型推荐技术。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !