移动社会网络数据存在网络结构复杂,节点间标签相互影响,包含交互信息、位置信息等多种复杂信息等特点,给识别用户的特征带来了许多挑战。针对这些挑战,通过分析一个真实的移动网络数据,利用统计学分析提取出已标记的不同特征用户间的差异,并利用这些差异,借助关系马尔可夫网络建立预测模型对未标记用户的年龄与性别进行特征识别。分析表明,不同年龄、性别的用户在不同时段的通话概率、通话熵,位置信息的分布、离散性,在社会网络中的集聚程度,以及相互之间二元、三元的交互频率方面都存在明显的差异。利用这些特征,提出了利用二元和三元交互的关系基团模板,结合用户自身的时间空间特征,通过关系马尔可夫网络计算用户特征的全联合分布概率,进而以此推断用户的年龄与性别的方法。经过实验分析,利用关系马尔可夫网络、用户时空信息和用户交互的关系基团的分类方法相较于传统的C4.5决策树、随机森林、Logistic回归和Naive Bayes等分类方法,能够提高最高约8%的预测准确率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !