×

基于深度特征聚合网络的医学图像分割方法

消耗积分:0 | 格式:rar | 大小:2.65 MB | 2021-05-13

分享资料个

  利用卷积神经网络(CNN)进行医学图像分割时,通常将分割问题抽象为特征表示和参数优化问题,但在上采样和下采样过程中容易丢失特征信息,导致分割效果不理想。设计包含三级特征表示层和特征聚合模块的深度特征聚合网络结构DFA-Net。通过三级特征表示层提取基础特征同时聚合中间特征和深层特征,从而以聚合深层特征弥补CNN上采样与下采样的特征损失。利用特征聚合模块聚合并激活浅层特征和深层特征,根据两者的互补信息分别做精细化调整。在脑图像和眼底图像公开数据集上的实验结果表明,DFA-Net能够充分利用深层特征与浅层特征的信息互补性处理分割结果中的孤立像素点,避兔上釆样与下采样引起的信息损失,其分割精度较U-net、Unet、 Segnet和 Laddernet等方法均有所提高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !