×

基于深度神经网络的特征加权融合人脸识别方法DLWF

消耗积分:1 | 格式:rar | 大小:1.03 MB | 2017-12-23

分享资料个

 针对目前难以提取到适合用于分类的人脸特征以及在非限条件下进行人脸识别准确率低的问题,提出了一种基于深度神经网络的特征加权融合人脸识别方法( DLWF)。首先,应用主动形状模型(ASM)提取出人脸面部的主要特征点,并根据主要特征点对人脸不同器官区域进行采样;然后,将所得采样块分别输入到对应的深度信念网络(DBN)中进行训练,获得网络最优参数;最后,利用Softmax回归求出各个区域的相似度向量,将多区域的相似度向量加权融合得到综合相似度评分进行人脸识别。经ORL和WFL人脸库上进行实验验证,DLWF算法的识别准确率分别达到97%和88. 76%,与传统算法主成分分析(PCA)、支持向量机(SVM)、DBN及FIP+线性判别式分析(LDA)相比,无论是限制条件还是非限制条件下,识别率均有提高。实验结果表明,该算法具有高效的人脸识别能力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !