×

基于特征加权与神经网络的恶意检测系统

消耗积分:0 | 格式:rar | 大小:1.14 MB | 2021-03-17

分享资料个

  当前Android系统恶意应用程序数量增长迅猛,然而传统检测系统无法对其进行快速有效检测,移动终端安全性面临严重威胁。提出一种将特征加权与双向长短期记忆(Bi-LSTM)神经网络深度学习算法相结合的恶意检测系统。采用静态分析方法从恶意与良性应用程序中提取不同类型行为特征,利用特征加权方法消除噪声与不相关因素后构建特征向量,使用Bi-LSTM深度学习算法优化行为特征参数,并设计恶意与良性应用程序分类模型,建立特征加权与深度学习算法相结合的恶意应用程序检测系统。实验结果表明,与支持向量机、RNN等传统检测系统相比,该系统对恶意应用程序具有较高的检测精度与准确事。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !