×

一种融合视觉词汇空间信息的主题模型

消耗积分:3 | 格式:rar | 大小:1.09 MB | 2017-12-30

分享资料个

针对主题模型中词汇独立性和主题独立性假设忽略了视觉词汇间空间关系的问题,提出了一种融合了视觉词汇空间信息的主题模型,称为马尔可夫主题随机场(MTRF),并且提出了主题在图像处理中的表现形式为对象的组成部件。根据相邻视觉词汇以很大概率产生于同一主题的特点,该算法在产生主题的过程中,通过视觉词汇间是否产生于同一主题,来判断主题产生于马尔可夫随机场(MRF),还是产生于多项式分布。同时,从理论和实验两方面论证了主题并非对象的实例,而是以中层特征的形式表达对象的各个组成部件。与隐狄利克雷分配(LDA)相比,MTRF在Caltech101上的平均准确率提高了3.91% ;在V0C2007 数据集上的平均精度均值(mAP)提高了2.03% ;此外,MTRF更准确地为视觉词汇分配了主题,能产生更有效表达对象的组成部件的中层特征。实验结果表明,MTRF有效地利用了空间信息,提高了模型的准确率。

一种融合视觉词汇空间信息的主题模型

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !