×

基于KELM的风功率预测方法研究

消耗积分:0 | 格式:rar | 大小:0.62 MB | 2018-01-12

分享资料个

  为了提高风功率预测精度及预测模型的泛化能力,提出基于改进AdaBoost.RT算法的风功率预测方法,可以有效提高弱学习算法的性能。首先建立核极限学习机(kemel extreme leaming machine,KELM)模型,并用改进蝙蝠算法对其参数进行优化,通过引入局部搜索和莱维飞行使算法具有更好的搜索能力和跳出局部最优的能力。在此基础上进一步通过AdaBoost.RT算法生成多个KELM个体(即基学习器),在训练过程中不断调整每个基学习器的权重及训练集中每个样本的权重。最后用训练好的基学习器来对测试样本进行预测,并集成得到最终结果。从不同时间尺度应用不同月份的风电场数据进行仿真测试,同时与前馈(back propagation,BP)神经网络、支持向量机、极限学习机等预测模型对比,仿真结果表明所提方法具有较好的预测精度及泛化性能。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !