×

基于交叉验证的改进RBF分类器设计

消耗积分:3 | 格式:rar | 大小:223 | 2010-01-07

贾飞小

分享资料个

本文提出了一种利用k均值聚类算法确定RBF神经网络径向基函数数目、函数中心及宽度,输出层权值由线性方程组确定,而网络参数的优化采用梯度下降法的网络设计方法。为了解决学习样本数据的有限性、RBF网络泛化能力较差和容易出现过拟合等问题,在网络训练中采用了基于交叉验证的归一化网络训练方法。通过仿真实验表明该方法训练所得的网络泛化能力及分类的准确率明显提高,并有效避免了过拟合问题

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !