目前,对于SaaS优化放置问题的研究都是假定云环境中的虚拟机的种类和数量都是确定的,即,在限定的资源范围内进行优化.然而,在公有云环境下,SaaS提供者所需要的云资源数量是不确定的,其需要根据IaaS提供者所提供的虚拟机种类以及被部署的SaaS构件的资源需求来确定,为此,站在SaaS提供者角度,提出一种新的SaaS构件优化放置问题模型,并采用混合遗传模拟退火算法(hybrid genetic and simulated annealing algorithm,简称HGSA)对该问题进行求解.HGSA结合了遗传算法和模拟退火算法的优点,克服了遗传算法收敛速度慢和模拟退火算法容易陷入局部最优的缺点,与单独使用遗传算法和模拟退火算法相比,实验结果表明,HGSA在求解SaaS构件优化放置问题方面具有更高的求解质量,所提出的方法为SaaS服务模式的大规模应用提供了理论与方法的支撑.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !