在自然语言处理任务中使用注意力机制可准确衡量单词重要度。为此,提出一种注意力增强的自然语言推理模型aESM。将词注意力层以及自适应方向权重层添加到ESIM模型的双向LSTM网络中,从而更有效地学习单词与句子表示,同时提高前提与假设文本之间局部推理的建模效率。在SNLI、 Multinli及 Quora数据集上的实验结果表明,与ESIM、HBMP、SSE等模型相比, ASIM模型的准确率能够提升0.5%~1%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !