针对传统的三维人脸识别分类算法大多需要多个样本进行训练,而在单训练样本的前提下识别性能会严重降低的问题,提出了基于模糊自适应共振理论映射( Fuzzy ARTMAP)的算法对三维人脸数据库进行分类识别。首先对三维人脸深度图像进行局部二值模式( LBP)统一模式算子的特征提取,再对LBP特征进行Log-Gabor小波变换,提取图像的频域特征向量作为训练的输入向量,最后将单样本训练向量集送入Fuzzy ARTMAP分类器进行训练识别。该算法在FRGC v2.0三维人脸数据库中的识别率可达到87. 15%,分类器的训练时间为24. 88 s,单张待识别人脸样本与单张已注册的人脸匹配时间为0. 0015 s,一张新的人脸样本在数据库完成一次搜索匹配则需要1.08 s。实验结果表明,所提方法在测试中的性能优于概率神经网络( PNN)和极限学习机神经网络(ELM),既能保证较高的识别率,又能拥有较短的训练时间,且时间增幅稳定,可控性强。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !