针对雷达导引头机电结构组成复杂、性能指标测试数据信息利用率不足、使用传统基于数据驱动的状态预测方法精度不高的问题,借鉴相关向量机( relevance vector machine,RVM)和Dempster_Shafer( D-S)证据理论,提出了一种基于证据融合和改进局域RVM的状态预测方法。首先,对标准RVM回归模型进行改进,通过构建方差高斯核函数( variance Gauss kernel function,VGKF)来提高核函数的全局性能和泛化能力;然后通过借鉴混沌序列局域预测法中邻近点个数的选取方法,利用Hannan-Quinn( HQ)准则对训练空间预测嵌入维数进行优化,避免了主观选取的盲目性,完成了改进局域相关向量机模型(local relevance vector machine.LRVM)的构建;最后,利用具有近似退化规律的同源装备测试数据对LRVM进行了改进,通过D-S证据理论对两种模型的预测结果进行了融合,建立了联合局域相关向量机(united local relevance vector machine,U-I_RVM)模型。通过对导引头相关参数的实例预测,验证了该方法的可行性和优越性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !