针对隐马尔可夫模型( HMM)在语音识别中存在的不合理条件假设,进一步研究循环神经网络的序列建模能力,提出了基于双向长短时记忆神经网络的声学模型构建方法,并将联结时序分类( CTC)训练准则成功地应用于该声学模型训练中,搭建出不依赖于隐马尔可夫模型的端到端中文语音识别系统;同时设计了基于加权有限状态转换器( WFST)的语音解码方法,有效解决了发音词典和语言模型难以融入解码过程的问题。与传统GMM-HMM系统和混合DNN-HMM系统对比,实验结果显示该端到端系统不仅明显降低了识别错误率,而且大幅提高了语音解码速度,表明了该声学模型可以有效地增强模型区分度和优化系统结构。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !