×

一种端到端的序列多任务法律判决预测模型

消耗积分:0 | 格式:pdf | 大小:1.70 MB | 2021-04-08

分享资料个

  法律判决预测是人工智能技术在法律领堿的应用,因此对法律判决预测方法的研究对于实现智慧司法具有重要的理论价值和实际意义。传统的法律判决预测方法大都是只进行单一任务的预测或仅基于参数共享的多任务预测,并未考虑各子任务之间的序列依存关系,因此预测性能难以得到进一步的提升。文中提出了一个端到端的基于过程监督的序列多任务法律判决预测模型,在建模各子任务之间的依存关系时,通过引入过程监督来确保依赖信息的准确性,从而提升序列子任务的预测性能。将所提模型应用到CAIL2018数据集上,取得了较好的分类效果,平均分类准确率比现有的 state-of- the-art方法的准确率提升了2%。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !