生物医学仪器包括了诊断仪器和治疗仪器两大类。在诊断仪器中要寻找对诊断有意义的具有某种特征的信号或信号的某种特征量。在治疗仪器中同样需要确定特征信号的存在或信号特征量的大小去控制治疗部分的工作。一般说来,信号并不能直接提供这些信息,它们需要应用信号处理方法去提取。例如,临床的常规脑电图检查可为脑损伤、脑血栓、内分泌疾病等的诊断、预防和治疗提供信息。另外脑电图也常用来作睡眠、麻醉深度的监护。但是白发脑电图的时域波形很不规则。不但它的节律随精神状态变化而改变,而且在基本节律的背景下还会不时地发生一些瞬态变化。传统的分析方法是用领域分析方法,用它的基本节律作为脑电图的基本特征量。
从信号中提取特征量的常用方法有谱分析、波形分析、建立模型等多种。有了特征量,就要根据它们进行诊断。诊断就是分类。现用的模式分类方法有统计模式识别、句法分析、模糊模式识别等。上述这些内容正是信号处理学科的主要研究对象,实际上这些方法现在也并不成熟。例如,在研究大脑感觉机制,提取诱发响应时,常常采用重复刺激方法和相干平均技术来克服自发脑电活动,增强有用信息。污染信号的噪声可以是加性的(即观测等于信号的噪声之和)、相乘性的(即观测等于信号与噪声的积);也可能有用的信息仅与信号的一部分有关,而与有用信息非相关部分也被看成噪声。总之,噪声的性质是多种多样的。数字滤波器是增强信息、抑制噪声的常用方法,然而它对于频带重叠的信号与噪声无能为力。因此消噪问题是生物医学信号处理研究的又一个重要内容。
目前生物医学信号处理中应用的抑制噪声和信号增强技术,常需要信号与噪声统计特性的先验知识,先验知识越完整,增强信号的效果越显著。然而得到这些先验知识常常又是困难的,这种要求限制了诸如维纳滤波、卡尔曼滤波等技术的应用。自适应方法可以自动调节参数来适应信号统计特性而不依赖先验知识,因而引起了广泛的注意。在某种情况下,需要将信号从一个地点传送到另一个地点。有不少突发性疾病对患者威胁极大,例如,猝死和呼吸障碍,为了及时抢救,在患者家里安装监护系统。监护系统采集的经电话电路传到监护中心,使患者处于医护人员的监护之下。
心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三维空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !