1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。 由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫米波技术和应用得到了迅速的发展。 2毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能互补的系统。下面分述各种应用的进展情况。
2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发射功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达 它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作于35GHz的空间目标识别雷达其天线直径达36m。用行波管提供10kw的发射功率,可以拍摄远在 16,000km处的卫星的照片。一部工作于94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发射功率时,可以对14400km远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达 因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达 现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达 实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作用距离较短),两者互补取得较好的效果。例如美国海军研制的双频精密跟踪雷达即有一部 9GHz、300kw的发射机和一部35GHz、13kw的发射机及相应的接收系统,共用2.4m抛物面天线,已成功地跟踪了距水面 30m高的目标,作用距离可达27km。双额还带来了一个附加的好处:毫米波频率可作为隐蔽频率使用,提高雷达的抗干扰能力。 2.1.5炮弹弹道测量雷达 这类雷达的用途是精确测定敌方炮弹的轨迹,从而推算出敌方炮兵阵地的位置,加以摧毁。多用3mm 波段的雷达,发射机的平均输出功率在20W左右。脉冲输出功率应尽可能高一些,以减轻信号处理的压力。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !