为解决共享交通下的共乘用户群体发现效率低、准确率不高问题,依据R-树原理建立Geo OD-Tree索引,并在此基础上提出以最大化共乘率为目标的群体发现策略。首先,对原始时空轨迹数据进行特征提取与标定处理,挖掘有效出行起讫点(OD)轨迹;其次,针对用户起讫点轨迹的特征,建立Geo OD-Tree索引进行有效的存储管理;最后,给出以最大化共乘行程为目标的群体发现模型,并运用K最近邻(KNN)查询对搜索空间剪枝压缩,提高群体发现效率。采用西安市近12 000辆出租车营运轨迹数据,选取动态时间规整(DTW)等典型算法与所提算法在查询效率与准确率上进行性能对比分析。与DTW算法相比,所提算法的准确率提高了10. 12%,查询效率提高了约15倍。实验结果表明提出的群体发现策略能有效提高共乘用户群体发现的准确率和效率,可有效提升共乘出行方式的出行率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !