采用深度学习进行船舶轨迹序列预测对于智能航运具有重要意义。船舶自动识别系统( Automatic Identification System,AlS)蘊藏着大量船舶轨迹特征,基于ΔlS数据预测船舶轨迹是近年智能航运研究的热点之一。文中提出了一种基于改进Seq2Seq的短时AlS轨迹序列预测模型,该模型使用门控循环单元网络将历史时空序列编码为一个上下文向量,用以保留轨迹空间点间的时序关系,同时缓解梯度下降的问题。通过使用门控循环单元网络作为解码器来预测船舶轨迹的时空序列。实验采用了大规模真实船舶AIS数据,选取两类典型河段(重庆弯曲河段和武汉顺直河段)为实验区域,以评估和验证模型的有效性和适用性。实验证明,该模型能够有效提高短时轨迹序列预测的准确性和效率,汋智能航船碰撞预警提供了一种有效可行的方法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !