针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提岀一种基于时空特性的长短期记忆模型( ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-LSTM网络中引人个人修正因子,对每类用户的输出结果进行修正,在确保基本特性的基础上突出个性化,更好地学习每类用户的行为轨迹持征,同时在保证 ST-LSTM网络特性的前提下给出2种ST-LSTM网络的简化变体模型。在公开数据集上的测试结果表明,与主流位置预测方法相比,该预测模型精确率、召回率、FⅠ值都有明显提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !