随着越来越多多模态数据的岀现,跨模态检索引起了广泛的关注。跨模态检索面临一大挑战为模态鸿沟,为了解决数据的异构性问题,公共子空间学习的方法被提出。然而,大部分方法仅仅是单独考虑了样本之间的相关联信息或不相关信息,而没有同时考虑样本间的相关信息和不相关信息。除此之外,大部分方法对于样本之间相似度的比较,使用的是基于文档对的排序比较,其没有充分考虑样本之间的类内依赖性和类间样本的结构差异性。基于此,提出同时而不是单独考虑样本间的类内关系和类间关系的基于列表排序的跨模态检索方法,其通过列表排序最大仳锚点与正样本之间的相似性,同时最小化锚点和负样本间的相似性。实验结果验证了该算法在跨模态检索中的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !