×

结合注意力机制的跨域服装检索方法

消耗积分:0 | 格式:rar | 大小:1.46 MB | 2021-05-12

分享资料个

  针对跨域服装检索中服装商品图像拍摄严格约束光照、背景等条件,而用户图像源自复杂多变的日常生活场景,难以避免背景干扰以及视角、姿态引起的服装形变等问题。提出一种结合注意力机制的跨域服装检索方法。利用深度卷积神经网络为基础,引入注意力机制重新分配不同特征所占比重,增强表述服装图像的重要特征,抑制不重要特征:加入短连接模块融合局部重要特征和整幅图像的高层语义信息,提取更具判别力的特征描述子:联合分类损失函数和三元组损失共同约束网络训练过程,基于类别信息缩小检索范围。采用标准的top-k检索精度作为评价指标,选择 Deep Fashion数据集与当前跨域服装检索常用方法进行对比,文中方法在top-20检索精度对比中取得了最好的检索性能(0.503)。实验结果表明,该方法能有效地处理视角、姿态引起的服装形变和复杂背景的干扰,同时不需要大量的样本标注信息,有效地提高了跨域服装检索的精度。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !