决定拓扑选择的一个重要因素是输入电压和输出/输入比。图1示出了常用隔离的拓扑相对适用的电压范围。拓扑选择还与输出功率,输出电压路数,输出电压调节范围等有关。一般情况下,对于给定场合你可以应用多种拓扑,不可能说某种拓扑对某种应用是绝对地适用,因为产品设计还有设计 者对某种拓扑的经验、元器件是否容易得到、成本要求、对技术人员要求、调试设备和人员素质、生产工艺设备、批量、军品还是民品等等因素有关。因此要选择最好的拓扑,必须熟悉每种拓扑的长处和短处以及拓扑的应用领域。如果随便选择一个拓扑,可能一开始就宣布新电源设计的失败。
图1:各种隔离拓扑应用电压范
2、输入和输出
如果输出与输入共地,则可以采用非隔离的Buck,Boost共地变换器。这些电路结构简单,元器件少。如果输入电压很高,从安全考虑,一般输出需要与输入隔离。
在选择拓扑之前,你首先应当知道输入电压变化范围内,输出电压是高于还是低于输入电压?例如,Buck变换器仅可用于输出电压低于输入电压的场合,所以,输出电压应当在任何时候都应当低于输入电压。如果你要求输入24V,输出15V,就可以采用Buck拓扑;但是输入24V是从8V~80V,你就不能使用Buck变换器,因为Buck变换器不能将8V变换成15V。如果输出电压始终高于输入电压,就得采用Boost拓扑。
如果输出电压与输入电压比太大(或太小)是有限制的,例如输入400V,要求输出48V还是采用Buck变换器,则电压比太大,虽然输出电压始终低于输入电压,但这样大的电压比,尽管没有超出控制芯片的最小占空比范围,但是,限制了开关频率。而且功率器件峰值电流大,功率器件选择困难。如果采用具有隔离的拓扑,可以通过匝比调节合适的占空比。达到较好的性能价格比。
3、开关频率和占空比的实际限制
3.1、开关频率
在设计变换器时,首先要选择开关频率。提高频率的主要目的是减少电源的体积和重量。而占电源体积和重量最大的是磁性元件。现代开关电源中磁性元器件占开关电源的体积(20%~30%),重量(30%~40%),损耗20%~30%。根据电磁感应定律有:
式中U-变压器施加的电压;N-线圈匝数;A-磁芯截面积;ΔB-磁通密度变化量;f-变压器工作频率。
在频率较低时,ΔB受磁性材料饱和限制。由上式可见,当U一定时,要使得磁芯体积减少,匝数和磁芯截面积乘积与频率成反比,提高频率是减少电源体积的主要措施。这是开关电源出现以来无数科技工作者主要研究课题。
但是能否无限制提高开关电源频率?非也。主要有两个限制因素:第一是磁性材料的损耗。高频时一般采用铁氧体,其单位体积损耗表示为:
式中η-不同材料的系数;f-工作频率;Bm-工作磁感应幅值。α和β分别为大于1的频率和磁感应损耗指数。一般α=1.2~1.7;β=2~2.7。频率提高损耗加大,为减少损耗,高频时,降低磁感应Bm使得损耗不太大,违背了减少体积的目的。否则损耗太大,效率降低。再者,磁芯处理功率越大,体积越大散热条件越差,大功率磁芯也限制开关频率。
图2:Buck变换器功率管电流、电压波形
其次,功率器件开关损耗限制。以Buck变换器为例来 说明开关损耗。图2是典型的电流连续Buck变换器功率管电流电压波形图。可以看到,晶体管开通时,集电极电流上升到最大值时集电极电压才开始下降。关断时,集电极电 压首先上升到最大值集电极电流才开始下降。假定电压、电流上升和下降都是线性的。可以得到开关损耗为
式中tr=tri trv—开通时电流上升时间与电压下降时间之和;td=tdi tdv—关断时电压上升时间与电流下降时间之和。一般tr td
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉