×

一种粒子置换的双种群综合学习PSO算法

消耗积分:0 | 格式:pdf | 大小:3.41 MB | 2021-04-29

分享资料个

  针对粒子群算法(PSO)种群多样性低和易于陷入局部最优等问题,提岀一种粒子置换的双种群综合学PSO算法( PP-CLPSO)。根据PSO算法的收敛特性和 Logistic映射的混沌思想,设计并行进化的PSO种群和混沌化种群,结合粒子编号机制,形成双种群系统中粒子的同号结构和冋位结构,其中粒子的惯性权重根据适应度值自适应调节;当搜索过程陷入局部最优时,PSO种群同位结构下适应度值较差的粒子,根据与混沌化种群间的同号结构执行粒子置换操作,实现了双种群系统资源的合理调度,増加了种群的多样性;进而综合双向搜索的同位粒子学习策略和线性递减搜索步长的局部学习策略,进行全局探勘和局部搜索,提高了算法的求解精度。实验选取9个基准测试函数,同时与4个改进的粒子群算法和4个群智能算法进行对比验证,实验结果表明,PP- CLPSO算法在求解精度和收敛速度等方面具备较好的综合性能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !