Facebook 开源了 FBGEMM,一个针对服务器推理优化的高性能核心库。 与其他库不同,FBGEMM 最大程度优化了 CPU 性能,通过降低精度计算来加速深度学习模型。 目前 Facebook 已经在自己的服务中使用该库,与目前的生产基准相比,它带来了两倍的性能提升。
FBGEMM 的最大特点是优化低精度数据。 与科学计算中使用的传统线性代数库不同,FBGEMM 不使用 FP32 或 FP64 精度,可以为小批量提供有效的低精度通用矩阵乘法(GEMM)运算,并支持精确损失最小化技术,例如行式(Row-wise)量化和异常值感知量化。
FBGEMM 已在 Facebook 上大规模部署,加速了许多端到端人工智能服务,包括将英语翻译成西班牙语的速度提高 1.3 倍,减少了 40% 的推荐系统信息源动态内存带宽的使用 ,并将机器学习系统 Rosetta 的字符检测速度提升2.4倍(Rosetta 是 Facebook 用来理解文本,图像和视频内容的系统。)