在非协作通信中,需要对接收的信号进行调制方式的自动识别。在高阶累积量域内构造信号识别的特征向量,采用基于二叉树的支持向量机将识别特征向量映射到高维空间并构造最优分类超平面,实现对数字调制信号的自动识别。该算法不仅结构简单、计算量小,而且解决了样本在低维空间中的不可分问题,具有良好的泛化推广能力。理论分析和仿真结果证明了该算法的正确性和有效性。
Abstract:
In non-cooperative communication system,it is necessary to recognize the modulation type of the received signals.The algorithm utilizes characteristic vector in high order cumulant domain.SVM based on binary tree maps the characteristic vector into the high dimension space and constructs the optimal separating hyperplane in the space to classify digital modulation signals. The algorithm has simple structure and high computation efficiency, also resolves the non-separable problem in low dimension space and has high generalization performance.The efficiency of the proposed classification algorithm is verified via theoretical analysis and extensive simulations.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !