ChatGPT上线不到一周用户突破100万,据报道称,ChatGPT开发者OpenAI预计ChatGPT明年年营收将会达到2亿美元,2024年营收将达到10亿美元。业内也都是ChatGPT的溢美之词,关于其实现的探讨已有不少。对其在具体场景中的应用探讨不多,本文将探讨ChatGPT在智能投顾领域应用,包括其带来的变革以及潜在问题。
当ChatGPT发布之后,就有一种观点认为并没有什么理论上的创新,并有些质疑这条路只有大的公司才能继续的道路。 ChatGPT是基于GPT3.5模型,2020年GPT3.0模型就有1700亿以上参数,训练一次需要上千万美元。可以想见,GPT3.5训练一次将需要更多的资源,也就只有头部的互联网公司能够实现。在笔者2020年出版的书就有如下论述:
“强化学习领域著名教授理查德·萨顿(Richard S. Sutton)则认为,人类不应试图把自己的知识和思维方式植入到AI之中,比如用人类的思路教AI下棋,将让AI按照人类总结的思路来识别图像等等。真正的突破,必然来自完全相反的方向。摒弃人类在特定领域的知识,充分利用大规模计算才是王道。用人类在特定领域的知识来提升人工智能,都是在走弯路。OpenAI首席科学家Ilya Sutskever精辟地总结了萨顿的核心观点:大力出奇迹(Computealways wins)。对此也有相反观点,牛津大学计算机系教授希蒙·怀特森(ShimonWhiteson)就认为构建AI需要融入人类知识,问题只在于该何时、如何、融入哪些知识。笔者认为,在科学界,自然需要各样的研究方法论。但在工业界,“大力出奇迹”,是不二法门。大规模计算的作用还远远没有发掘完,只要数据数量与质量、计算能力持续提升,加之算法的优化,在工业界一定还有更多的惊喜等着我们。”
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !