×

GPU行业深度报告:AI产业化再加速 智能大时代已开启

消耗积分:0 | 格式:pdf | 大小:7.73 MB | 2023-03-29

香香技术员

分享资料个

  在芯片算力快速提升、日趋庞大的数据量共同支撑下,AI算法迭代升级加速。AI的发展经历了很长时间的积累,其能不断跨越科学与 应用之间的鸿沟主要得益于技术突破、行业落地、产业协作等多方面的推动,而技术突破是其中最为关键的要素。从起步阶段发展到 当下深度学习阶段,算法、数据和算力构成了AI三大基本要素,并共同推动AI向更高层次的感知和认知发展。算法方面,目前深度学习仍然是AI技术发展的主导路线,但是早期所使用的有监督学习方式由于受限于对大量标注数据依赖与理解能力缺乏,而且模型通用 性较差,正逐步被新的技术所取代,在芯片算力的快速提升、日益庞大的数据量这两者的支撑下,新算法正处于加速迭代升级过程中。

  云端计算进入高性能计算时代,大模型训练仍以GPU为主。虽然AI芯片目前看有GPU、ASIC、CPU、FPGA等几大类,但是基于几点原因, 我们判断GPU仍将是训练模型的主流硬件:1、Transformer架构是最近几年的主流,该架构最大的特点之一就是能够利用分布式GPU进 行并行训练,提升模型训练效率;2、ASIC的算力与功耗虽然看似有优势,但考虑到AI算法还是处于一个不断发展演进的过程,用专用芯片部署会面临着未来算法更迭导致芯片不适配的巨大风险;3、英伟达强大的芯片支撑、生态、算法开源支持。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !