提出了一种基于径向基函数(RBF)
免疫神经网络的故障检测方法,该故障检测方法由系统辨识、残差过滤和故障报警浓度等功能模块构成。系统辨识基于免疫RBF神经网络,用于故障检测的残差是通过对系统的模型输出与系统的实际输出进行在线比较得到的。在克隆选择算法的亲和力函数中引入泛化能力干涉因子,增强了RBF网络的泛化能力。在该故障检测方法中,通过过滤残差和引入故障报警浓度,使得故障检测仅对因故障引起的残差敏感。并联机器人的故障检测实例表明,该方法能够有效地检测和定位出驱动器故障和传感器故障,具有良好的容噪性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉