×

PyTorch教程8.7之密集连接网络(DenseNet)

消耗积分:0 | 格式:pdf | 大小:0.24 MB | 2023-06-05

分享资料个

ResNet 显着改变了如何在深度网络中参数化函数的观点。DenseNet(密集卷积网络)在某种程度上是对此的逻辑延伸 Huang et al. , 2017DenseNet 的特点是每一层都连接到所有前面的层的连接模式和连接操作(而不是 ResNet 中的加法运算符)以保留和重用早期层的特征。要了解如何得出它,让我们稍微绕道数学。

import torch
from torch import nn
from d2l import torch as d2l
from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
import tensorflow as tf
from d2l import tensorflow as d2l

8.7.1. 从 ResNet 到 DenseNet

回忆一下函数的泰勒展开式。对于这一点x=0 它可以写成

(8.7.1)f(x)=f(0)+x⋅[f′(0)+x⋅[f″(0)2!+x⋅[f‴(0)3!+…]]].

关键是它将函数分解为越来越高阶的项。同样,ResNet 将函数分解为

(8.7.2)f(x)=x+g(x).

也就是说,ResNet分解f分为一个简单的线性项和一个更复杂的非线性项。如果我们想捕获(不一定要添加)两个术语以外的信息怎么办?一种这样的解决方案是 DenseNet Huang等人,2017 年

https://file.elecfans.com/web2/M00/A9/C7/poYBAGR9Ne2AS2zdAAAtlyxWZMM335.svg

图 8.7.1 ResNet(左)和 DenseNet(右)在跨层连接中的主要区别:加法的使用和连接的使用。

如图 8.7.1所示,ResNet 和 DenseNet 的主要区别在于后者的输出是 连接的(表示为[,]) 而不是添加。结果,我们从x在应用越来越复杂的函数序列后,它的值:

(8.7.3)x→[x,f1(x),f2([x,f1(x)]),f3([x,f1(x),f2([x,f1(x)])]),…].

最后,将所有这些功能组合在 MLP 中,再次减少特征数量。就实现而言,这非常简单:我们不是添加术语,而是将它们连接起来。DenseNet 这个名字源于变量之间的依赖图变得非常密集这一事实。这种链的最后一层与前面的所有层紧密相连。密集连接如图 8.7.2所示

https://file.elecfans.com/web2/M00/AA/42/pYYBAGR9Ne-AInwAAABmDzH7OvY343.svg

图 8.7.2 DenseNet 中的密集连接。注意维度如何随着深度增加。

构成 DenseNet 的主要组件是密集块过渡层前者定义输入和输出如何连接,而后者控制通道的数量,使其不会太大,因为扩展 x→[x,f1(x),f2([x,f1(x)]),…] 可以是相当高维的。

8.7.2. 密集块

DenseNet 使用改进的 ResNet 的“批量归一化、激活和卷积”结构(参见第 8.6 节中的练习 )。首先,我们实现这个卷积块结构。

def conv_block(num_channels):
  return nn.Sequential(
    nn.LazyBatchNorm2d(), nn.ReLU(),
    nn.LazyConv2d(num_channels, kernel_size=3, padding=1))
def conv_block(num_channels):
  blk = nn.Sequential()
  blk.add(nn.BatchNorm(),
      nn.Activation('relu'),
      nn.Conv2D(num_channels, kernel_size=3, padding=1))
  return blk
class ConvBlock(nn.Module):
  num_channels: int
  training: bool = True

  @nn.compact
  def __call__(self, X):
    Y = nn.relu(nn.BatchNorm(not self.training)(X))
    Y = nn.Conv(self.num_channels, kernel_size=(3, 3), padding=(1, 1))(Y)
    Y = jnp.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !