×

基于模糊故障特征信息的随机集度量信息融合诊断方法

消耗积分:3 | 格式:rar | 大小:226 | 2009-11-13

小峰

分享资料个

该文给出一种基于模糊故障特征信息随机集度量的信息融合诊断方法。针对信号采集与故障特征提取中的模糊性,首先用模糊隶属度函数分别表示故障档案库中的多种故障样板模式和从不同传感器观测中提取的多类故障特征亦即待检模式,进而基于模糊集的随机集模型,得到样板模式与待检模式的匹配度,即基本概率指派函数(BPA)。然后利用Dempster-Shafer 证据组合规则对BPA 进行融合,给出诊断结果。该文给出的待检模式是从多个连续观测中提取的,与原有的由单个观测确定待检模式的方式相比,文中提出的特征提取及匹配方法,同时考虑了样板模式和待检模式所具有的模糊性,能够显著降低融合决策中的不确定性,大大提高故障识别的能力。最后通过电机转子故障诊断实例验证方法的有效性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !