基于卷积神经网络的立体匹配方法未充分利用图像中各个层级的特征图信息,造成对图像在不适定区域的特征提取能力较差。提岀一种融合多尺度与多层级特征的立体匹配方法。通过在双塔结构卷积神经网络模型的前端设计一个池化金字塔层,提取图像的多尺度低层结构特征。在该网络模型的后端融合最后三层网络的高级语乂特征来提取图像特征,并对图像特征进行相似性度量后输岀视差图。在 KITTI2015数据集上的实验结果表明,与LUO和 Anita方法相比,该方法的像素误差精度分别由14.6%830%降至8.02%,且可得到细节信息更好的视差图。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !