×

监控系统中数据转换器的应用解析及性能挑战

消耗积分:1 | 格式:rar | 大小:0.4 MB | 2017-11-14

分享资料个

 ADI推出GSPS数据转换器拯救电子监控与对抗系统
  频谱拥堵、更高工作频率和更复杂的波形,给电子监控与对抗系统带来层出不穷的问题,需要侦测的带宽越来越大,检测灵敏度要求也越来越高。随着越来越多的功能通过数字域实现,上述带宽和灵敏度两个因素,加上成本,直接把高速模数转换器(ADC)的性能推向极限,常常使ADC成为系统的局限所在。所幸的是,新一代高速ADC的性能水平符合要求,可提供一些系统级解决方案来应对这些挑战。
  现代监控系统的架构如图1所示,它包括三个基本功能:
  ●射频/微波调谐器
  ●数字化仪,ADC及相关的放大器和缓冲器
  ●快速傅里叶变换和数字信号处理
  很多情况下,高速ADC性能——从模拟域到数字域的转换——成为系统的限制因素。尽管最大限度降低成本和系统尺寸始终极其重要,但系统设计人员还必须关注如何最佳地平衡提高瞬时监控带宽的需求(以便最大限度提高拦截概率),以及如何将带内高功率信号降低系统灵敏度的影响减至最少。
  监控系统中数据转换器的应用解析及性能挑战
  表1:高线性度低速ADC与过去和现在的GSPS ADC的对比
  关于如何达到系统指标和已确定的取舍要求,ADC的采样速率和无杂散动态范围(SFDR)通常是影响决策的两大主要因素。转换器的采样速率决定奈奎斯特频段,进而决定个别转换器的最大可观测带宽;SFDR决定可检测的信号电平。虽然噪声频谱密度可能也需要考虑,但在多数情况下,ADC的噪底远低于杂散水平,而且从系统运行角度看,数字化过程中产生的杂散与频谱中进行数字化的低功率信号难以区分。因此,系统的灵敏度与SFDR直接相关,这样检测到假目标的可能性最低。
  例如,考虑对两个连续波(CW)信号进行数字化处理,信号A是一个满量程输入,信号B的功率则低得多。作为目标信号的信号B与数字化信号A所产生的杂散可能难以区别,因为二者的电平相似。所以,信号B可能低于系统的检测电平,不会被标示为目标信号。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !