×

基于支持度和增比率的改进关联分类算法

消耗积分:2 | 格式:rar | 大小:0.46 MB | 2017-12-05

分享资料个

  关联分类是一项重要的分类技术,目前普遍采用基于支持度和置信度的关联分类模式。但是,用支持度度量项集的分类能力过于简单,且置信度不能度量项集与类的相关性,所以利用支持度和置信度容易产生质量不好的规则。提出改进的关联分类算法 ACSER。ACSER不仅考虑项集到本类的支持度,也考虑项集到补类的支持度。首先,提取频繁增比模式作为分类候选规则集;其次,利用置信度和增比率度量规则的强度,按照其强度进行排序和剪枝;最后,选择足条最优的规则进行预测。在1 6个UCI数据集上的实验结果表明,改进的分类算法ACSER与传统的分类算法相比有更高的分类准确率。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !