由于稀疏表示方法在人脸分类算法中的成功使用,在此基础上提出了一种更为有效的基于稀疏表示(SRC)和弹性网络相结合的分类方法。为了加强样本间的协作表示能力以及增强处理强相关性变量数据的能力,基于迭代动态剔除机制,提出一种结合弹性网络的稀疏分解方法。通过采用训练样本的线性组合来表示测试样本,并运用迭代机制从所有样本中剔除对分类贡献度较小的类别和样本,采用Elastic Net算法来进行系数分解,从而选择出对分类贡献度较大的样本和类别,最后根据计算相似度对测试样本进行分类。在ORL、FERET和AR三个数据集进行了许多实验,实验结果显示算法识别率分别达到了98. 75%、86. 620-/0、99. 720-/0,表明了所提算法的有效性。所提算法相比LASSO和SRC-GS等方法,在系数分解过程中增强了处理高维小样本和强相关性变量数据的能力,突出了稀疏约束在该算法中的重要性,具有更高的准确性和稳定性,能够更加有效地适用于人脸分类。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !