×

基于YOLO_v3与稀疏光流的人群异常行为识别

消耗积分:0 | 格式:rar | 大小:5.00 MB | 2021-05-13

分享资料个

  目前公共场所人群异常行为检测的异常种类检测准确率较低,且多数对突然奔跑等部分异常行为无法识别。为此,提出一种基于YOLO_3与稀疏光流的人群异常行为识别算法,通过检测小团体异常为群体异常预警与采取相应的应急措施提供充足的时间。为方便定位异常发生区域,将视频分割为多个子区域,通过获取子区域的图像样本进行诱发群体异常的小团体异常检测,利用改进YoLO_3神经网络对传统算法较难检测行人持棍、持枪、持刀与面部遮挡等异常进行检测,在未检测到上述异常诱因时,使用稀疏光流法获取人群平均动能与运动方向熵,将得到的特征数据通过PSO-ELM进行分类,区分正常行为与同向突散或无规则突散。实验结果表明,与现有同类算法相比,该算法能有效检测行人持械与面部遮挡等小团体异常,并且定位异常发生区域的准确率达到98.227%。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !