×

基于优化CNN结构的交通标志识别算法

消耗积分:1 | 格式:rar | 大小:0.85 MB | 2017-12-06

分享资料个

  现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基于优化CNN结构的交通标志识别算法。其中:BN方法可以用来改变中间层的数据分布情况,把卷积层输出数据归一化为均值为0、方差为1,从而提高训练收敛速度,减少训练时间;GLP方法则是先训练第一层卷积网络,训练完把参数保留,继续训练第二层,保留参数,直到把所有卷积层训练完毕,这样可以有效提高卷积网络识别率;SVM分类器只专注于那些分类错误的样本,对已经分类正确的样本不再处理,从而提高了训练速度。使用德国交通标志识别数据库进行训练和识别,新算法的训练时间相对于传统CNN训练时间减少了20. 67 %,其识别率达到了98. 24%。所提算法通过对传统CNN结构进行优化,极大地缩短了训练时间,并具有较高的识别率。

基于优化CNN结构的交通标志识别算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !