×

基于Hadoop的数据驱动的并行增量算法

消耗积分:1 | 格式:rar | 大小:0.98 MB | 2017-12-09

分享资料个

  针对传统支持向量机(SVM)算法难以处理大规模训练数据的困境,提出一种基于Hadoop的数据驱动的并行增量Adaboost-SVM算法(PIASVM)。利用集成学习策略,局部分类器处理一个分区的数据,融合其分类结果得到组合分类器;增量学习中用权值刻画样本的空间分布特性,对样本进行迭代加权,利用遗忘因子实现新增样本的选择及历史样本的淘汰;采用基于HBase的控制器组件用以调度迭代过程,持久化中间结果并减小MapReduce原有框架迭代过程中的带宽压力。多组实验结果表明,所提算法具有优良的加速比、扩展率和数据伸缩度,在保证分类精度的基础上提高了SVM算法对大规模数据的处理能力。

基于Hadoop的数据驱动的并行增量算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !