×

申威.太湖之光深度学习库中的并行卷积算法

消耗积分:0 | 格式:pdf | 大小:1.09 MB | 2021-05-19

分享资料个

  神威·太湖之光深度学习库中的并行卷积算法存在批量受限的问题,且传统gemm卷积算法在其硬件架构上效率较低。基于申威异构众核处理器,提出一种无批量限制的通用并行卷积算法。结合异步DMA访存操作和从核间的寄存器通信,使用数据重用和软件流水等方法降低从核访存开销,利用手动向量化的方法充分发挥从核浮点的计算能力。实验结果表明,与基础7层循环算法、gemm算法和 Intel平台上的MKL-DNN算法相比,该算法的加速性能较好。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !