在对多时相高分辨遥感图像进行配准时,由于成像条件差异,图像间存在的地物变化与相对视差偏移两类典型异常区域会影响配准精度。针对上述配准中存在的问题,提出一种基于异常区域感知的多时相高分辨率遥感图像配准方法,包括粗匹配和精配准两个阶段。尺度不变特征变换( SIFT)算法考虑到尺度空间属性,不同尺度空间提取的特征点在图像中对应不同大小的斑块,高尺度空间提取的特征点对应图像中的大斑点,其对应地物相对稳定、不易发生变化。首先,利用SIFT算法提取高尺度空间特征点完成图像快速粗匹配;其次,利用灰度相关性度量对图像块进行相对偏移量统计分类以感知视差偏移区域,同时结合空间约束条件,确定低尺度空间特征点的有效提取区域以及匹配点搜索范围,完成图像精配准。实验结果表明,将该方法用于多时相高分辨遥感图像配准,可有效抑制异常区域对特征点提取的影响进而提高配准精度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !