×

基于局部特征过滤和极限学习机的快速火焰识别方法

消耗积分:1 | 格式:rar | 大小:0.80 MB | 2017-12-11

分享资料个

  传统的基于物理信号的火焰识别方法易被外部环境干扰,且现有火焰图像特征提取方法对于火焰和场景的区分度较低,从而导致火焰种类或场景改变时识别精度降低。针对这一问题,提出一种基于局部特征过滤和极限学习机的快速火焰识别方法,将颜色空间信息引入尺度不变特征变换( SIFT)算法。首先,将视频文件转化成帧图像,利用SIFT算法对所有图像提取特征描述符;其次,通过火焰在颜色空间上的信息特性进一步过滤局部噪声特征点,并借助关键点词袋(BOK)方法,将特征描述符转换成对应的特征向量;最后放入极限学习机进行训练,从而快速得到火焰识别模型。在火焰公开数据集及真实火灾场景图像进行的实验结果表明:所提方法对不同场景和火焰类型均具有较高的识别率和较快的检测速度,实验识别精度达97qo以上;对于包含4301张图片数据的测试集,模型识别时间仅需2. 19 s;与基于信息熵、纹理特征、火焰蔓延率的支持向量机模型,基于SIFT、火焰颜色空间特性的支持向量机模型,基于SIFT的极限学习机模型三种方法相比,所提方法在测试集精度、模型构建时间上均占有优势。

基于局部特征过滤和极限学习机的快速火焰识别方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !